397 research outputs found

    Upper and Lower Bounds for Weak Backdoor Set Detection

    Full text link
    We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Krom formulas. These bounds improve an earlier known bound of 6^k. We also prove a 2^k lower bound for these problems, subject to the Strong Exponential Time Hypothesis.Comment: A short version will appear in the proceedings of the 16th International Conference on Theory and Applications of Satisfiability Testin

    On the Equivalence among Problems of Bounded Width

    Full text link
    In this paper, we introduce a methodology, called decomposition-based reductions, for showing the equivalence among various problems of bounded-width. First, we show that the following are equivalent for any α>0\alpha > 0: * SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * 3-SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Max 2-SAT can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Independent Set can be solved in O∗(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, and * Independent Set can be solved in O∗(2αcw)O^*(2^{\alpha \mathrm{cw}}) time, where tw and cw are the tree-width and clique-width of the instance, respectively. Then, we introduce a new parameterized complexity class EPNL, which includes Set Cover and Directed Hamiltonicity, and show that SAT, 3-SAT, Max 2-SAT, and Independent Set parameterized by path-width are EPNL-complete. This implies that if one of these EPNL-complete problems can be solved in O∗(ck)O^*(c^k) time, then any problem in EPNL can be solved in O∗(ck)O^*(c^k) time.Comment: accepted to ESA 201

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(⋅\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(⋅\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Faster exponential-time algorithms in graphs of bounded average degree

    Get PDF
    We first show that the Traveling Salesman Problem in an n-vertex graph with average degree bounded by d can be solved in O*(2^{(1-\eps_d)n}) time and exponential space for a constant \eps_d depending only on d, where the O*-notation suppresses factors polynomial in the input size. Thus, we generalize the recent results of Bjorklund et al. [TALG 2012] on graphs of bounded degree. Then, we move to the problem of counting perfect matchings in a graph. We first present a simple algorithm for counting perfect matchings in an n-vertex graph in O*(2^{n/2}) time and polynomial space; our algorithm matches the complexity bounds of the algorithm of Bjorklund [SODA 2012], but relies on inclusion-exclusion principle instead of algebraic transformations. Building upon this result, we show that the number of perfect matchings in an n-vertex graph with average degree bounded by d can be computed in O*(2^{(1-\eps_{2d})n/2}) time and exponential space, where \eps_{2d} is the constant obtained by us for the Traveling Salesman Problem in graphs of average degree at most 2d. Moreover we obtain a simple algorithm that counts the number of perfect matchings in an n-vertex bipartite graph of average degree at most d in O*(2^{(1-1/(3.55d))n/2}) time, improving and simplifying the recent result of Izumi and Wadayama [FOCS 2012].Comment: 10 page

    Covering Problems for Partial Words and for Indeterminate Strings

    Full text link
    We consider the problem of computing a shortest solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We also consider covering partial words, which are a special case of indeterminate strings where each non-solid symbol is a don't care symbol. We prove that indeterminate string covering problem and partial word covering problem are NP-complete for binary alphabet and show that both problems are fixed-parameter tractable with respect to kk, the number of non-solid symbols. For the indeterminate string covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(k \log k)} + n k^{O(1)}-time algorithm. For the partial word covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(\sqrt{k}\log k)} + nk^{O(1)}-time algorithm. We prove that, unless the Exponential Time Hypothesis is false, no 2o(k)nO(1)2^{o(\sqrt{k})} n^{O(1)}-time solution exists for either problem, which shows that our algorithm for this case is close to optimal. We also present an algorithm for both problems which is feasible in practice.Comment: full version (simplified and corrected); preliminary version appeared at ISAAC 2014; 14 pages, 4 figure

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp⁥(−d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n1−1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1−1/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXP⊆̞TC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp⁥(−d)n^{1+\exp(-d)} wires), runs in time at most 2nexp⁥(−d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n1−1/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n1−1/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1−Ω(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs
    • 

    corecore